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Abstract According to the guidelines of the American

College of Cardiology/American Heart Association 2006

for perioperative cardiovascular evaluation for non-cardiac

surgery, beta-blocker therapy should be considered for

high-risk individuals undergoing vascular surgery or high-

and intermediate-risk patients undergoing non-cardiac

surgery. This guideline might induce physicians to

increasingly use beta-blockers in the hope of preventing

perioperative cardiac complications. However, beta-

blockers have potential beneficial effects outside the pre-

vention of cardiac events. In addition to reducing anes-

thetic and analgesic requirements during the perioperative

period, beta-blockers have neuroprotective effects in

patients with brain trauma and possible effectiveness in the

management of intraoperative awareness-induced post-

traumatic stress disorder. Moreover, intrathecal adminis-

tration of beta-blockers may have antinociceptive effects.

Physicians need to bear in mind the benefits of beta-

blockers for purposes other than preventing cardiac events

when applied in the perioperative period, and they should

be familiar with the pharmacodynamics and risk–benefit

ratio with their use. This review focuses on possible ex-

tracardiac indications of beta-blockers.

Keywords Anesthetic requirements � Beta-blockers �
Immunomodulation � Intraoperative

Introduction

Beta-blocker therapy is widely known to reduce perioper-

ative cardiovascular complications [1, 2]. Recent guide-

lines from the American College of Cardiology/American

Heart Association [2] recommend the use of beta-blockers

in high-risk patients undergoing vascular surgery or high-

and intermediate-risk patients undergoing non-cardiac

surgery. While this guideline might induce physicians to

increasingly use beta-blockers during surgery in the hope

of preventing perioperative cardiac events, beta-blockers

have potential beneficial effects in addition to the preven-

tion of cardiac events. This review focuses on the possible

extracardiac indications of beta blocker therapy.

All beta-blockers are able to antagonize the transduction

of the beta-adrenergic receptor signal. Currently used beta-

blockers can be roughly classified into four divisions

depending on their ancillary properties, namely, intrinsic

sympathomimetic activity, beta-receptor subtype specific-

ity (beta 1 vs. beta 2), and membrane-stabilizing activity,

respectively. Prichard’s classification is widely accepted

for classifying the known beta-blockers. This classification

is summarized in Table 1 [3].

Beta-blockers reduce anesthetic and analgesic

requirements during the perioperative period

Reduction of anesthetic requirements

Studies carried out during the last 20 years have revealed

that the perioperative use of beta-blockers can decrease

anesthetic requirements [4–15].

Stanley et al. [8] were the first to report the possible

beneficial effects of perioperative use of beta-blockers on
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the reduction of anesthetic dosage. They compared the dose

of sufentanil required to produce unconsciousness during

anesthetic induction in 22 patients receiving propranolol

(80–240 mg/day, oral doses) and 22 patients not receiving

propranolol or any other beta-blocker therapy prior to

coronary artery bypass grafting (CABG). The variables

compared between the two groups were incidence of

intraoperative hypertension, requirements for supplements

to treat hypertension, and recovery times. Patients on

propranolol therapy required an average of 3.8 ± 0.3 lg/

kg of sufentanil to reach unconsciousness, while patients

not taking any beta-adrenergic blockers needed

4.9 ± 0.3 lg/kg of sufentanil. Total intraoperative sufen-

tanil dose requirements were 11.1 ± 0.8 lg/kg for patients

on propranolol and 15.0 ± 1.0 lg/kg for patients not tak-

ing any beta-blockers. In addition, systolic blood pressure

increases of[20% the preoperative (control) values during

sternotomy and maximal sternal spread occurred signifi-

cantly more frequently in patients not taking beta-blockers

than in those administered propranolol. Of the patients not

taking beta-blockers, 18 and 27% required phentolamine to

control arterial blood pressure before bypass and during the

bypass, respectively. In contrast, only 5% of patients on

propranolol therapy needed phentolamine before bypass,

none of required it during bypass. Stanley et al. speculated

that the possible mechanisms by which propranolol could

potentiate the effects of sufentanil include increased

occupation of the opiate receptor sites of the central ner-

vous system (CNS), stimulation of CNS opiate receptors,

reduction of plasma volume, changes in the distribution

volume of sufentanil, decreased sufentanil metabolism, or

alteration of CNS membranes, resulting in increased

transfer of sufentanil into the brain.

In 1991, Smith et al. [9] compared esmolol, a short-

acting beta-1 blocker, with alfentanil as a supplement for

propofol–nitrous oxide–atracurium anesthesia. These

researchers showed that esmolol can be used in place of

alfentanil to supplement propofol–nitrous oxide–atracuri-

um anesthesia in outpatients undergoing arthroscopic pro-

cedures, although esmolol-treated patients required more

postoperative pain relief and opioid analgesia than those

treated using alfentanil. Johansen et al. [7] subsequently

examined in detail whether esmolol could reduce the pro-

pofol concentration required to prevent movement at skin

incision. Patients were anesthetized with propofol alone,

propofol plus low-dose continuous esmolol infusion (bolus

of 0.5 mg/kg, maintenance dose of 50 lg/kg/min), or

propofol plus high-dose continuous esmolol infusion (bolus

1 mg/kg, maintenance dose of 250 lg/kg/min) along with

60% nitrous oxide. The esmolol infusion was initiated

before the induction of anesthesia and continued until the

completion of the study. The researchers were able to show

that the high-dose esmolol infusion induced a 26% reduc-

tion in the minimum effective plasma concentration (CP50;

defined as suppression of movement at incision in 50% of

patients) of propofol with nitrous oxide. This led them to

conclude that esmolol may have anesthetic-sparing effects

in humans under clinically relevant conditions. They also

found that the minimum alveolar concentration (MAC) of

isoflurane was not altered when esmolol was used alone but

Table 1 Characteristics of clinically used beta-blockers, Prichard classification

Division Group Drug Beta-1/beta-2

selectivity

ISA MSA Main metabolic organ Other activity

Propranolol = 1

I 1 Alprenolol 1 ?? ? Hepatic/renal

2 Propranolol 1 - ? Hepatic Inverse agonist

3 Pindolol 15–20 ??? - Hepatic/renal

Carteolol 5–15 ?? - Hepatic/renal

4 Nadolol 5 - - Hepatic/renal

II 1 Acebutolol 0.1 ? ? Hepatic/renal

2 Celiprolol 0.1–0.3 ? - Hepatic = renal Beta 2-agonist

4 Metoprolol 0.8–1.0 - - Hepatic Inverse agonist

Atenolol 1 - - Renal

III 1 Labetalol 0.3 ?/- ? Renal/hepatic

2 Carvedilol 3–5 - ? Hepatic Antioxidant alpha

1-antagonist

4 Amosulalol 0.25 - - Hepatic/renal

Arotinolol 5 - - Hepatic/renal

IV Nipradilol 3 - - Hepatic = renal

ISA intrinsic sympathomimetic activity, MSA membrane stabilizing effect

?, Effect present; -, effect absent
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that it was significantly decreased while high doses of es-

molol was used with alfentanil [6]. These data indicate that

esmolol does not have anesthetic effects per se, rather, it

has anesthetic-sparing effects when used in conjunction

with anesthetic agents. Johansen [10] examined whether

esmolol affected the electroencephalogram (EEG) during

propofol/alfentanil anesthesia and found that bispectral

index (BIS) was significantly suppressed and that the burst

suppression ratio (SR) was increased by esmolol (BIS

37 ± 6–22 ± 6, 40% decrease; SR 5 ± 7 to 67 ± 23,

13.4-fold increase) compared with baseline levels. In

addition, discontinuation of esmolol reversed these changes

in BIS and SR values.

A study by Zaugg et al. [5] examined the effects of

atenolol administration on hemodynamic stability, ade-

quacy of anesthetic depth, anesthetic and analgesic

requirements, and recovery from anesthesia. Patients were

assigned to receive either pre- and postoperative atenolol or

intraoperative atenolol. They demonstrated that although

perioperative beta-blockade did not significantly alter the

hormonal stress response, beta-blocked patients showed

improved hemodynamic stability both during emergence

from anesthesia and postoperatively. In addition, patients

treated with atenolol perioperatively required less isoflu-

rane than patients without atenolol perioperatively, and

patients who received intra- or pre-and postoperative

atenolol required less fentanyl than patients without any

beta-blockers. Further, despite the differences in intraop-

erative anesthetic dose requirements in this study, the

depths of anesthesia, as indicated by average BIS values,

were similar in all three groups. Patients treated with

atenolol had significantly shorter recovery times and were

discharged from the post-anesthetic care unit (PACU)

earlier. Total morphine doses and pain scores in the PACU

were also lower in patients treated with atenolol. Zaugg

et al. subsequently performed a post-hoc analysis of the

administration of atenolol during the perioperative period,

and re-confirmed that atenolol reduces anesthetic require-

ments but does not modify anesthetic depth indicators [13].

Other investigators [11, 12, 14–17] have shown the efficacy

of esmolol in reducing anesthetic requirements without

affecting BIS (Table 2). For example, a recent study by

Collard et al. [17] examined the effects of a continuous

infusion of esmolol (5–15 lg/kg/min) in the absence of

opioid supplements during surgery. In this study, the con-

trol group received intermittent doses of fentanyl, the es-

molol group received a continuous infusion of esmolol

with no supplemental opioids intraoperatively, and the

remifentanil group received a continuous infusion of rem-

ifentanil (0.1–0.5 lg/kg/min). These researchers found that

fentanyl requirements in the PACU were significantly

lower in the esmolol group (91.5 ± 42.7 lg) as compared

with the other two groups (remifentanil: 237.8 ± 54.7 lg,

control: 168.1 ± 96.8 lg). Nausea was more frequent in

the control (66.7%) and remifentanil (67.9%) groups than

in the esmolol group (30%). The esmolol group left the

hospital 45–60 min earlier.

In contrast, using dogs, Tanifuji and Eger [18] exam-

ined the effects of propranolol on anesthetic requirements,

specifically changes in the MAC of halothane, accompa-

nying acute [2 and 10 mg/kg intravenous (iv)] and

chronic (200 mg/day orally for 10 days) propranolol

administration and found no effect of acute or chronic

propranolol administration on halothane MAC. In addi-

tion, they demonstrated that an intravenous beta-agonist,

isoproterenol also had no effect on MAC. These

researchers suggested that since propranolol readily

crosses the blood–brain barrier (BBB), neither acute

inhibition of central beta-adrenergic receptors nor chronic

receptor blockade with potential changes in central cate-

cholamine levels influence volatile anesthetic MAC. Orme

et al. [19] examined the effects of esmolol on propofol

concentration and the prevention of response to command

and found no effects of the use of esmolol on anesthetic

requirements during propofol anesthesia. Larson et al.

[20] examined whether esmolol infusion (intravenous

bolus of 1.5 mg/kg of esmolol, followed by an infusion at

100 lg/kg/min) would blunt pupillary changes in response

to noxious stimulation and found that esmolol infusion

did not blunt such changes.

Landiolol (ONO 1101) is a newly developed, highly

ultra-short-acting beta-1 blocker created by altering the

chemical structure of esmolol [21–23]. This agent is

approximately ninefold more potent in beta-1 blocking

activity and eightfold more cardioselective than esmolol.

The suppressive effects of landiolol on cardiovascular

performance have been reported to be less potent than

those of esmolol at equipotent beta-blocker doses [23].

Landiolol exhibits suppression predominantly on the

chronotropic effect, rather than on the inotropic effect.

Thus, landiolol is suitable for stabilizing hemodynamics

during the perioperative period. There have, however, been

a few studies on the anesthetic-sparing effect of landiolol

during anesthesia [24–27]. Kurita et al. [26], using a swine

model, examined the effects of landiolol on the MAC of

isoflurane required to prevent movement in response to a

noxious stimulus in 50% of the experimental animals. A

landiolol infusion was administered at a rate of

0.125 mg/kg/min for 1 min and thereafter decreased to

0.04 mg/kg/min. The results showed that landiolol attenu-

ated the increases in heart rate and mean arterial blood

pressure that occurred in response to the dewclaw clamp,

but they did not alter the MAC of isoflurane. In contrast,

Tanabe et al. [25] showed that a low dose of landiolol

(bolus injection of 0.031 mg/kg and continuous infusion at

a rate of 0.01 mg/kg/min) reduces intraoperative
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sevoflurane requirements during sevoflurane/N2O/fentanyl

anesthesia in patients undergoing hip surgery.

One important question that emerged during the inves-

tigations of these anesthetic-sparing effects of beta-block-

ers was whether beta-blockers mask the signs of light

anesthesia and thus increase intraoperative awareness [28].

Ginsburg [29], in 1992, initially posed the question, ‘‘is IV

esmolol an acceptable substitute for an inadequate anes-

thetic?’’ Since then, many studies have shown the efficacy

of using beta-blockers in reducing anesthetic requirements

during the perioperative period without any change in

anesthetic depth [4–15]. Studies showing reduced anes-

thetic requirements by esmolol have mainly been based on

BIS. This raises the important issue of whether BIS is a

valid predictor of anesthetic depth. ‘‘Inadequate’’ anesthe-

sia can cover several different levels, ranging from implicit

memory, explicit memory, and obeying commands during

anesthesia without recall, to actual awareness and recall

[30]. The proper definition of ‘‘inadequate anesthesia’’ is

thus of great importance in addressing this issue.

Beta-blockers seem likely to have no anesthetic effect

per se, as reported by Johansen et al. [6]. The mechanisms

underlying the effects of esmolol on anesthetic require-

ments remain unclear. One possible explanation may be

that beta-blockers have CNS-modulating activities and

exert anxiolytic effects (see following section). Another

explanation may lie in an alteration of propofol pharma-

cokinetics by beta-blockers. Upton et al. [31] demonstrated

that cardiac output is a determinant of the initial concen-

trations of propofol after the administration of short infu-

sions. A reduction in cardiac output leads to reduced

hepatic blood flow, which could affect the metabolism of

drugs with a large hepatic extraction ratio, such as fentanyl.

Beta-blocker use would thus likely result in the prolonga-

tion of the analgesic effects of fentanyl and also elicit a

reduction in postoperative opioid consumption. Indeed,

Kurita et al. [24] suggest that the pharmacodynamic

changes and pharmacokinetic modifications of anesthetic

agents induced by the decrease in cardiac output resulting

from the administration of beta blockers should contribute

to an anesthetic-sparing effect during anesthesia.

Major questions still exist about the mechanisms and

sites of anesthetic action. Classically, it has been widely

assumed that the brain, especially the cerebral cortex, is the

main site of anesthetic action. Anesthetic effect may result

in the several components of general anesthesia: uncon-

sciousness, amnesia, and immobility in response to a

painful stimulus. The standard for determining anesthetic

requirements is the MAC of an inhaled agent that prevents

gross purposeful movement in response to a supramaximal

painful stimulus. Antognini et al. [32] demonstrated, in

animal studies, the importance of subcortical structures,

such as the spinal cord, in the generation of purposeful

movement in response to a painful stimulus under general

anesthesia. Laboratory studies [33, 34] have shown that it

is of great interest that the mechanisms and sites of action

of beta-blockers used for reducing anesthetic requirements

during surgery may be closely related to the site of anes-

thetic action. In addition, the measurement and assessment

of anesthetic potency, such as MAC, is also of great

interest during investigations of the effect of beta-blockers

on the reduction of anesthetic requirements. Rampil et al.

[34] found that anesthetic-induced unresponsiveness to

noxious stimuli measured by MAC testing did not depend

on cortical forebrain structures in rats. These researchers

therefore speculated that beta-blockers administered during

the perioperative period may exert their anesthetic-sparing

effects, not by effects on the cerebral cortex, but via the

spinal cord.

Antinociceptive effects

Involvement of the sympathetic system in nociception is

well established. Some reports have indicated that beta-

blockers may produce antinociceptive effects. Davidson

et al. [35] examined the effects of esmolol infusion on

nociceptive behaviors induced by the formalin test in rats.

Esmolol infused at low (40 mg/kg/h) and high (150 mg/kg/

h) doses did not affect behavioral changes recorded

immediately after formalin injection (phase 1; 0–5 min),

whereas only the high dose was effective in decreasing

limb lifting during the secondary response (phase 2; 10–

35 min). Taira et al. [36] subsequently examined the

effects of intrathecal landiolol on nociceptive behaviors in

the rat formalin test. Intrathecal injection of landiolol was

found to decrease the number of flinches in a dose-

dependent manner, with the effect induced by 0.5 mg of

landiolol being completely reversed by intrathecal isopro-

terenol. These researchers concluded that beta-blockers

may have antinociceptive effects. Kinjo et al. [37] subse-

quently reported almost the same finding. Zhao et al. [38]

recently examined the effects of administering intrathecal

landiolol on nociception and spinal c-Fos expression by the

mouse formalin test. The intrathecal injection of 750 lg/kg

landiolol decreased pain-related behaviors in phase 1 (the

initial acute phase: during the first 5 min after formalin

injection followed by a prolonged tonic response), while

intrathecal landiolol administered at 250, 500 and 750 lg/

kg decreased pain-related behaviors in phase 2 (secondary

and longer lasting response: beginning about 10 min after

formalin injection) during the formalin test. c-Fos protein

levels in the spinal dorsal horn were decreased by landiolol

administered at 750 lg/kg. In a human study, Zaugg et al.

[5] reported that the intravenous administration of atenolol

pre-and postoperatively or during surgery resulted in lower

pain scores and reduced the total morphine requirement in

J Anesth (2010) 24:81–95 85

123



the PACU. Chia et al. [39] reported that patients treated

with esmolol infusion during hysterectomy required less

patient-controlled intravenous morphine over 3 days than

those not administered esmolol, despite similar pain

intensity and medication side effects, and they also

received significantly lower concentrations of end-tidal

isoflurane and fentanyl during anesthesia.

The mechanisms of beta-blocker-induced antinocicep-

tive effects remain unclear. Tanahashi et al. [40] showed

that propranolol, esmolol, landiolol, and lidocaine block

tetrodotoxin-resistant Na channels in rat spinal dorsal root

ganglia in a dose-dependent manner, although very high

landiolol concentrations are required to achieve antinoci-

ceptive effects.

Noxious stimuli are conducted through the spinal cord,

the brainstem reticular formation, and the thalamus to the

cerebral cortex, where an electroencephalographic arousal

response is evoked [41, 42]. Beta-adrenoceptors are present

in various parts of the reticular activating system, partic-

ularly the medial septal region of the basal forebrain. In

mice and rats, the locus coeruleus-associated noradrenergic

system participates in arousal, and beta-blockers within this

region reduce forebrain electroencephalographic activity

[41, 42]. In a continuation of these studies, the same group

of researchers [43] showed that amphetamine-induced

activation of the rat forebrain is clearly inhibited by

timolol. Radisavievic et al. [44] found that norepinephrine

modulated excitatory amino acid-induced responses in

developing human and adult rat cerebral cortexes. These

findings strongly suggest the contribution of beta-adrener-

gic mechanisms to antinociception via a central site.

However, the pharmacokinetics of beta-blockers, particu-

larly esmolol, do not entirely support this mechanism.

Esmolol is hydrophilic, as is atenolol. They produce the

same plasma/cerebrospinal fluid ratio, and probably do not

readily cross the BBB. However, Johansen [10] found that

esmolol promoted electroencephalographic burst suppres-

sion during propofol/alfentanil anesthesia. Howie et al.

[45] and Van den Broek et al. [46] showed that esmolol

reduced the duration of seizures induced by electrocon-

vulsive therapy (ECT). These reports suggest that esmolol

may cross the BBB. In contrast, another study showed that

esmolol had no effect on seizure duration [47]. Given these

contradictory results, the question of whether esmolol or

atenolol can cross the BBB remains unanswered.

Another potential mechanism of the antinociceptive

effects of beta-blockers is via their action on peripheral

anti-inflammatory sites [48–52]. The results from a study

using human subjects revealed that norepinephrine

increases hyperalgesia in response to heat in skin-sensi-

tized by capsaicin [48]. In addition, Khasar et al. [49]

showed that epinephrine produced cutaneous mechanical

hyperalgesia and sensitized cultured dorsal root ganglion

neurons in the absence of nerve injury via beta-adrenergic

receptors and that these effects of epinephrine were med-

iated by both the protein kinase A and protein kinase C

second-messenger pathways. Cunha et al. [51] reported that

carrageenin-evoked hyperalgesia was attenuated by ateno-

lol. Ernberg et al. [52] reported that injection of propran-

olol into the human masseter muscle reduces the pain

induced by local administration of 5-HT.

Although extensive data from both experimental and

clinical studies have shown that beta-blockers may have

antinociceptive effects, the body of evidence is as yet

insufficient to conclusively state that beta-blocker therapy

is effective in blocking nociceptive stimuli. Further

extensive experimental and clinical studies are needed to

clarify the antinociceptive mechanisms of beta-blockers.

Central nervous system effects

Many studies have demonstrated that beta-blockers affect

the CNS [53–67]. Ko et al. [53] reviewed the association

of beta-blockers used in the treatment of myocardial

infarction, heart failure, or hypertension with depression,

fatigue, and sexual dysfunction, and showed that although

the frequency of depressive symptoms was similar

between subjects using beta-blockers (20.1%) and placebo

(20.5%), the frequency of fatigue and sexual dysfunction

symptoms was higher in the those using beta-blockers

(fatigue: 33.4 vs. 30.4%, respectively; sexual dysfunction:

21.6 vs. 17.4%, respectively). The side effects of the use

of beta-blockers, such as depressive symptoms or

increased frequency of fatigue, clearly suggest that beta-

blockers affect the CNS. Brismar et al. [54, 62] examined

the relationship between beta-blocker-induced CNS side

effects and the nightly urinary secretion of melatonin in

hypertensive patients. They found that severe CNS side-

effects, such as nightmares and sleep disorders, occurred

only in patients treated with metoprolol (21%) and that

these side-effects were always accompanied by low levels

of melatonin. Kostis and Rosen [55] showed that beta-

blockers can affect rapid eye movement (REM) sleep,

possibly associated with nightmares. Yamada et al. [61]

indicated that beta-adrenergic receptor occupation is

related to sleep disorders. Another study showed that

lipophilic beta-blockers have a relatively greater effect on

sleep disorders [65].

The administration of moderate doses of the catechola-

mines epinephrine and norepinephrine shortly after mem-

ory training is known to result in the enhancement of later

retention performance [57, 58]. Nielson and Jensen [60]

compared the effects of beta-blockers on arousal-induced

modulation of working memory between elderly and young

humans. The young subjects, normal elderly subjects, and

those taking no beta-blocker medications all showed
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enhanced long-term recognition performance as a result of

arousal manipulation; in contrast, elderly patients with

beta-blockers exhibited impaired arousal-induced modula-

tion of working memory.

Although the effects of beta-blockers on the CNS, such

as sleep disorders or memory impairment, may not be

beneficial to surgical patients, Pitman et al. [68] undertook

a pilot study to determine whether the administration of

propranolol shortly after a traumatic event can prevent

post-traumatic stress disorder (PTSD), thereby demon-

strating that the acute post-traumatic administration of

propranolol may have preventive effects on subsequent

PTSD. The symptoms of PTSD resemble—and have been

suggested to result from—the psychiatric sequelae of some

degree of intraoperative awareness [69], so that the intra-

operative use of beta-blockers may also prove effective in

the management of intraoperative awareness-induced

PTSD. Pitman stated that ‘‘The body releases epinephrine

and other stress hormones during a trauma, probably as part

of a survival mechanism. Epinephrine helps you cope in

the traumatic situation, but also makes the memory of the

situation stronger. Interrupting beta-adrenergic transmis-

sion during or immediately after trauma with propranolol

can block the emotional potentiation of memory and

forestall PTSD’’ [68].

Neuroprotective effects are another possible beneficial

effect of beta-blockers on the CNS [70–77]. In animal

studies, Lysko et al. [70] examined the neuroprotective

mechanisms underlying the effects of carvedilol on cul-

tured cerebellar neurons and on CA1 hippocampal neurons

in gerbils exposed to brain ischemia. These researchers

found that carvedilol protected cultured neurons in a dose-

dependent manner against both glutamate-mediated ex-

citotoxicity and oxidant stress. They concluded that car-

vedilol may reduce the risk of cerebral ischemia and stroke

by virtue of both antihypertensive actions and antioxidant

properties. Savitz et al. [71] subsequently demonstrated

that carvedilol was neuroprotective in focal cerebral

ischemia and may protect the ischemic brain by inhibiting

apoptosis and attenuating the expression of tumor necrosis

factor (TNF)-alpha and interleukin (IL)-1 beta. Little et al.

[78] examined the effects of propranolol on cerebral blood

flow and early ischemic changes following middle cerebral

artery (MCA) occlusion in cats. Propranolol was infused at

a rate of 1 mg/kg/h for 4 h, beginning 1 h before MCA

occlusion, and a 4 mg/kg bolus was administered imme-

diately before occlusion. These researchers found that

although the changes in cerebral blood flow and EEG in the

propranolol-treated cats were not different from those in

propranolol-untreated cats, there were significant decreases

in infarct volume in propranolol-treated cats relative to

propranolol-untreated cats. The same group subsequently

showed the beneficial effects of propranolol in acute focal

cerebral ischemia [79]. In contrast, Junker et al. [80]

showed that clenbuterol induces neuroprotective effects via

an increase in nerve growth factor expression and that this

beneficial effect is blocked by propranolol. Goyagi et al.

[81, 82] recently examined the neuroprotective effects of

several beta-blockers in rats with transient focal cerebral

ischemia. The rats received an intravenous infusion of

saline, propranolol, carvedilol, esmolol, and landiolol

30 min before MCA occlusion, and the infusion was con-

tinued for 42 h. Cerebral infarct volumes in the cortex were

lower in rats treated with propranolol (72 ± 33 mm3),

carvedilol (64 ± 25 mm3), esmolol (65 ± 18 mm3), and

landiolol (44 ± 18 mm3) than in saline-treated rats

(205 ± 28 mm3).

A number of clinical studies have demonstrated beta-

blocker exposure with reduced mortality in patients with

head injury [72–77]. Inaba et al. [73] retrospectively

evaluated 1156 patients with isolated head injury who were

admitted to the Intensive Care Unit during a 90-month

period. Of these, 203 (18%) received beta-blockers and 953

(82%) did not. Although patients receiving beta-blockers

had severe head injury more frequently, had lower Glas-

gow Coma Scale scores, and more frequently required

craniotomy, beta-blocker use was an independent protec-

tive factor for mortality (odds ratio 0.54, 95% confidential

interval 0.33–0.91). Other investigators have reported

almost the same results [74–77]. In addition, Amory et al.

[72] retrospectively examined the perioperative use of

beta-blockers on neurological complications in patients

undergoing coronary artery bypass graft surgery and

showed that the use of beta-blockers was associated with a

substantial reduction in the incidence of postoperative

neurological complications. These reports indicate that

beta-blockers may exert neuroprotective effects when used

in the perioperative period. Further extensive investigations

are needed to verify these potentially important neuropro-

tective effects.

Immune response and beta-adrenergic antagonists

Activation of the hypothalamic–pituitary–adrenal axis and

the sympathetic nervous system, resulting in a systemic

release of adrenal steroid hormones and catecholamines, is

a well-known essential component of the response to major

surgery, brain injury, or trauma. The balance of pro-and

anti-inflammatory cytokines may be altered perioperative-

ly. These changes are thought to be attributable to the stress

response of surgery or the response to cardiopulmonary

bypass. An important consequence of the pro-inflammatory

cytokine activity is increased adhesion of neutrophils.

Further, high levels of these stress mediators are known to

be immunosuppressive in surgical patients.
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Some reports have shown that beta-blockers may have

immunomodulatory effects during cerebral injury [83–89]

or myocardial infarction [90, 91]. Prass et al. [83]

investigated the effects of propranolol on the immunoin-

hibitory alterations induced by stroke. Their study showed

that the administration of propranolol to animals with

middle cerebral artery occlusion decreased the percentage

of apoptotic splenocytes to levels observed in sham-

operated mice and prevented decreases in peripheral

blood lymphocyte counts. Another study [88] showed that

propranolol prevented an increase in IL-10 plasma levels

in a rat model of acute brain injury. Carvedilol increases

the production of IL-12 and interferon-alpha [86] and

decreases the production of TNF-alpha and IL-6 [84].

Atenolol reportedly decreases the production of TNF-

alpha [87]. Katafuchi et al. [89] demonstrated that

reduction in natural killer cytotoxicity produced by

stimulation of the splenic nerve was completely blocked

by the intravenous administration of nadolol (a peripher-

ally acting beta-blocker), but not by infusion of prazosin

(an alpha-antagonist).

With respect to the effects of beta-blockers on the

immunomodulatory system during myocardial infarction,

there have been some reports on the effects of beta-

blockers on the inflammatory system [90–92]. Prabhu et al.

[92] demonstrated the efficacy of metoprolol treatment in

reducing the production of TNF-alpha and IL-1 beta pro-

tein in rat myocardial infarction models. Other studies [90,

91, 93] have also shown the effects of metoprolol or car-

vedilol on cytokine production in patients with myocardial

infarction. Loiek et al. [94] reported that carvedilol pre-

vents the increased production of reactive oxygen species

in HL-60 cells.

In contrast, Lang et al. [95] reported that the continuous

infusion of propranolol in septic rats exacerbated the sep-

sis-induced increase in skeletal muscle IL-6 and TNF-alpha

protein. Schmitz et al. [96] reported that the administration

of propranolol (0.5 mg/kg subcutaneous every 12 h) in

septic mice increased the splenocyte apoptosis rate,

reduced the proliferative capacity of splenocytes, and

modulated cellular cytokine release (IL-6 and interferon-

gamma), resulting in an increase in sepsis-induced lethality

from 47 up to 68%. However, in a clinical study, Jeschke

et al. [97] demonstrated that propranolol not only decreased

serum TNF and IL-1 beta levels compared with controls

but that it also attenuated the incidence of sepsis in

severely burned children. These reports may indicate that

the effects of beta-blockers depend on the immunomodu-

latory condition of the animal before administration of the

drug, as suggested by Oberbeck [98]. It is interesting that

Benish et al. [99] found that the combination of a COX-2

inhibitor and a beta-blocker (etodolac and propranolol)

attenuated surgery-induced decreases in natural killer

cytotoxicity, suggesting a possible reduction in the risk of

tumor metastasis.

Although there is as yet no laboratory or clinical evi-

dence supporting the suggestion that the perioperative use

of beta-blockers would be able to modulate the immune–

endocrine system, when the effects of anesthetic agents on

the immune–endocrine system [100] are considered toge-

ther with the results of these experimental studies, the

perioperative use of beta-blockers may plausibly modulate

the immunosuppressive alterations induced by surgical

stress.

Other considerations

Effects of beta-blockers on pulmonary function

There have been some reports on the effects of beta-

blockers on pulmonary function [101–103]. Although

patients with active asthma should not receive beta-

blockers, chronic obstructive pulmonary disease is not a

contraindication to the use of beta-blockers perioperatively,

and even patients with inactive stable asthmatic disease

may be given a low dose of highly selective beta-1

blockers, such as landiolol. While the single-dose admin-

istration of beta-agonists produces bronchodilation and

inhibits airway hyperresponsiveness, chronic repetitive

administration may increase airway hyperresponsiveness,

airway inflammation, and the risk of death. It is interesting

to note that Nquyen et al. [101] demonstrated that chronic

administration of beta-blockers reduced inflammation and

mucous metaplasia in a murine model of asthma.

Another possible beneficial effect of beta-blockers on

pulmonary function is that beta-blockers enhance hypoxic

pulmonary vasoconstriction [102, 103], which may be

favorable in patients undergoing one-lung ventilation.

Use of short-acting beta-blockers during intubation

or emergence periods

Laryngoscopy and tracheal intubation maneuvers induce

marked hemodynamic changes, such as increases in heart

rate and systolic blood pressure, which, in combination,

result in an unfavorable supply–demand balance of myo-

cardial oxygen. The degree of response to laryngeal stim-

ulation appears to vary with the depth of anesthesia [104],

the duration [105] and difficulties encountered during tra-

cheal intubation [106, 107], as well as on patient-dependent

variables, including age and history of diabetes or cardio-

vascular disease [108, 109]. Although the hemodynamic

changes are transient, drastic hemodynamic changes in

patients with pre-existing ischemic coronary disease,

hypertension or cerebrovascular disease may increase the
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risk of myocardial ischemia, arrhythmia, and even infarc-

tion and cerebral hemorrhage [110, 111].

To date, many studies have shown the effectiveness of

esmolol in blunting the hemodynamic changes induced by

endotracheal intubation. Figueredo and Garcia-Fuentes

[112] provided an excellent review of the effectiveness of

different regimes and doses of esmolol, as well as the grade

of hypotension and bradycardia that can be produced when

esmolol is used in conjunction with anesthesia-inducing

agents. Of the 72 publications they identified, 38 random-

ized controlled trials containing a total of 2009 patients

were ultimately included in their analysis. Following

anesthetic induction, systolic blood pressure values

decreased (with respect to baseline) by 6.1% in placebo

groups and by 13.8% in esmolol-treated patients. Follow-

ing endotracheal intubation, systolic blood pressure

increased by 26.3% in patients in the placebo group com-

pared with an increase of 9.1% in patients treated with the

various regimes of esmolol. After induction of anesthesia,

minimum heart rates for the placebo group were 7.2%

higher than baseline values, while those for the esmolol

group were 4.2% lower than baseline values. Endotracheal

intubation resulted in a 29.6% increase in the heart rate of

patients in the placebo group compared with a 9.3%

increase in patients treated with esmolol. These researchers

concluded that, with respect to the administration of es-

molol ‘‘before’’ or ‘‘after’’ administration of the induction

agents, no significant differences were observed between

the two alternatives with respect to any of the variables

assessed. They also concluded that esmolol is effective in

blocking the tachycardia and systolic blood pressure

increase induced by airway manipulation. However, the

use of esmolol is associated with a dose-dependent risk of

hypotension during the induction of anesthesia, thereby

precluding its routine use in anesthesia. The use of esmolol

in specific risk groups remains controversial, and in groups

in whom the risk–benefit ratio is difficult to predict, usage

needs to be evaluated on an individual basis. To diminish

the incidence and seriousness of the side-effects, a rea-

sonable recommendation is to administer a small loading

dose (500 lg/kg) of esmolol over 4 min, followed by a

continuous intravenous infusion of 200–300 lg/kg/min.

In contrast to the use of esmolol to prevent hemody-

namic changes during endotracheal intubation, few studies

have examined the effects of landiolol on hemodynamic

changes associated with endotracheal intubation [113–

117]. Kitamura et al. [115] examined the dose-related

effects of landiolol on cardiovascular responses to tracheal

intubation and found that although the administration of

0.25 and 0.5 mg/kg landiolol decreased the incidence of

tachycardia, these doses were insufficient to suppress

increases in systolic blood pressure. Hasuo et al. [116]

examined the effects of a continuous infusion of landiolol

on hemodynamic responses to endotracheal intubation

during induction with isoflurane. Landiolol was infused at a

rate of 0.125 mg/kg/min for 1 min as a loading dose, fol-

lowed by a maintenance dose of 0.04 mg/kg/min. These

researchers found that significant increases in heart rate

occurred in both the control and landiolol groups in

response to isoflurane inhalation and tracheal intubation,

although the magnitude of the increase was significantly

reduced in the landiolol group. Blood pressure increased

after tracheal intubation in the control group but remained

unchanged in the landiolol group. Plasma concentrations of

norepinephrine increased after induction and intubation in

both groups, with no significant differences between

groups. Only one study has compared the effects of es-

molol and landiolol on hemodynamic responses to endo-

tracheal intubation: Oda et al. [118] examined the

comparative effects of esmolol and landiolol on hemody-

namic changes and BIS during anesthesia induction. Es-

molol was administered as a bolus of 1.0 mg/kg, followed

by infusion at 0.25 mg/kg/min, while landiolol was given

as a bolus of 0.125 mg/kg, followed by infusion at

0.04 mg/kg/min. The administration of these agents was

started 5 min after the induction of anesthesia, and

endotracheal intubation was performed 12 min after

anesthetic induction. These researchers observed no sig-

nificant differences in hemodynamic changes between es-

molol and landiolol groups throughout the study periods.

Sugiura et al. [119] examined the optimal dose of landiolol

in terms of the hemodynamic alterations induced by lar-

yngoscopy in normotensive and hypertensive patients.

Landiolol at a dose of 0.1 mg/kg was the most effective

against intubation-induced tachycardia when infused 4 min

before intubation in normotensive patients. However, a

0.2 mg/kg dose of landiolol was necessary to prevent

tachycardia after intubation in hypertensive patients. They

concluded that landiolol had no significant effects on

arterial blood pressure at any dose, indicating that landiolol

is suitable for stabilizing hemodynamic changes during

intubation.

Emergence from anesthesia and tracheal extubation are

also associated with marked hemodynamic alterations,

such as increases in heart rate and systolic blood pressure.

Such changes may induce adverse effects in patients with

ischemic heart disease. Physicians therefore need to be

cognizant of whether ultra-short-acting drugs, such as es-

molol or landiolol, provide hemodynamic stabilization

during emergence from anesthesia and tracheal extubation.

Some reports have examined the effects of esmolol on

hemodynamic changes during the extubation period [120–

123]. Dyson et al. [120] assessed the effects of three doses

of esmolol (1.0, 1.5, and 2.0 mg/kg) given as a bolus 2 min

after the reversal of neuromuscular blockade, in a double-

blinded study, and found that all three doses of esmolol
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attenuated increases in heart rate but that 1.0 mg/kg was

insufficient to control increases in systolic blood pressure

associated with emergence from anesthesia and tracheal

extubation. They concluded that doses of 1.5 and 2.0 mg/

kg controlled both systolic blood pressure and heart rate,

but that the larger dose produced significant decreases in

systolic blood pressure. Kurian et al. [121] examined

whether esmolol infusion affected the incidence of ST-

segment changes during tracheal extubation after coronary

artery surgery. Esmolol was infused from the time of the

patient’s entry into the intensive care unit until 180 min

after tracheal extubation, with the aim of maintaining heart

rate within the range of 55–75 beats/min. A ‘‘sliding scale’’

of esmolol at 0–300 lg/kg/min was used, depending on

heart rate. Patients in the esmolol group displayed a lower

incidence of myocardial ischemia than those in the placebo

group (3/31 vs. 12/37, p = 0.05). Although esmolol infu-

sion stabilized the hemodynamic changes associated with

extubation, seven patients in the esmolol group suffered

adverse events related to esmolol infusion that were not

found in the placebo group. These researchers therefore

concluded that although the use of esmolol reduced the

incidence of myocardial ischemia, the incidence of adverse

effects makes this agent unsuitable for routine prophylaxis

in patients after coronary artery surgery. Kovac et al. [122]

compared the effectiveness of intravenous nicardipine

(0.03 mg/kg) and esmolol (1.5 mg/kg) in controlling heart

rate and blood pressure responses to emergence and extu-

bation and found that although esmolol was more effective

than nicardipine in attenuating heart rate responses to

extubation, nicardipine was more effective in controlling

blood pressure responses. An interesting study was per-

formed by Grillo et al. [123] in which a 0.3 mg/kg/min

infusion of esmolol was administered from the end of

anesthesia to 15 min after extubation to patients undergo-

ing neurosurgery. They found that esmolol blunted

increases in cerebral blood flow velocity during emergence,

an effect that may be attributable to hyperemia during

neurosurgical recovery.

In contrast to esmolol, very few reports have exam-

ined the effects of landiolol on the hemodynamic chan-

ges of emergence from anesthesia and extubation [124–

126]. Nonaka et al. [124] looked at the effects of con-

tinuous landiolol infusion on the hemodynamic changes

of emergence. Landiolol was continuously infused at a

rate of 0.125 mg/kg/min for 1 min immediately after the

injection of neostigmine–atropine. The results demon-

strated the efficacy of landiolol administration on

hemodynamic stabilization during recovery from general

anesthesia. Nakagawa et al. [125] reported a case dem-

onstrating the usefulness of landiolol in the prevention of

myocardial ischemia during extubation and recovery

from anesthesia.

Specific points for attention

Metabolic effects of beta-blockers

Several studies have indicated that there is some hypergly-

cemic effect in patients treated with beta-blockers. Although

the mechanism of beta-blocker-induced hyperglycemia is

not clearly proven, it is reported that beta-blockers increase

fasting glucose by as much as 28 mg/dl and glycosylated

hemoglobin by 1% [127]. A recent large study [127] showed

that beta-blockers impaired glucose tolerance and appeared

to increase the risk of diabetes on a long-term basis by 28%.

Another large study from Bakris et al. [128] compared the

effects of carvedilol and metoprolol on glycemic control,

showing that carvedilol stabilized glycosylated hemoglobin

and improved insulin resistance compared with metoprolol.

However, to date, there have been no reports describing the

use of beta-blockers on glucose homeostasis during the

perioperative period.

Another criticism of the use of beta-blockers is unfa-

vorable changes in lipid metabolism [129], although this

adverse effect is not of immediate concern in the periop-

erative period. Significant increases in mean plasma total

and very-low-density lipoprotein cholesterol and reduc-

tions in high-density lipoprotein cholesterol and free fatty

acids concentrations have been reported with the use of

atenolol, metoprolol, propranolol, and oxprenolol.

Drug interactions

Concurrent administration of beta-blockers with drugs that

alter gastrointestinal, hepatic, and renal function may affect

the plasma concentrations, duration of action, and efficacy

of beta-blockers.

It is widely known that the co-administration of calcium

channel blockers with beta-blockers induces suppression of

myocardial function, sinus arrest, or atrioventricular block.

The review articles by Kjeldsen et al. [130] and Brouwer

et al. [131] emphasize that although the clinical importance

of the combined use of calcium channel blockers and beta-

blockers on the treatment of angina pectoris in patients

with coronary artery disease has been documented, careful

attention should be paid to the concurrent use of calcium

channel blockers with beta-blockers in the presence of

impaired left ventricular function, bradycardia, or con-

duction abnormalities.

There have been a number of reports describing the

possible interactions of beta-blockers and other agents.

Westphal et al. [132] found an increased bioavailability of

digoxin with oral co-administration of talinolol, resulting

from competition for intestinal P-glycoprotein. Other

reports show the possible interaction of beta-blockers and

clonidine [133, 134].
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Of great concern to anesthesiologists is a possible

interaction between anesthetic agents and beta-blockers.

Remifentanil and esmolol are metabolized by non-specific

esterases and other tissues, which may alter the pharma-

cokinetics of remifentanil. However, laboratory studies in

rats revealed no pharmacokinetic or pharmacodynamic

interaction between remifentanil and esmolol in this animal

model [135, 136].

Propofol may alter myocardial beta-adrenoceptor bind-

ing and responsiveness. However, Zhou et al. [137] dem-

onstrated that relatively high concentrations of propofol

were needed to antagonize beta-adrenoceptor binding and

tissue responsiveness in the rat heart. Based on experi-

mental studies, it has also been reported that volatile

anesthetics can modify beta-adrenoceptor stimulations

[138–140]. However, as yet, the interaction between pro-

pofol or volatile anesthetics and beta-blockers has not been

clinically proven.

Conclusions

While beta-blockers have been widely used for hemody-

namic stabilization during the perioperative period, they

have a number of additional potential beneficial effects

other than prevention of cardiac events, such as antinoci-

ceptive effects, reduced anesthetic dosage during the per-

ioperative period and, possibly, immunomodulation.

Physicians need to bear in mind the benefits of beta-

blockers other than for preventing cardiac events when

using these agents in the perioperative period, and they

should be familiar with their pharmacodynamics and bal-

ance of risks and benefits when using them for these extra-

cardiac beneficial effects.
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